3.628 \(\int \sqrt{a+b \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=277 \[ -\frac{\left (A b^2-4 a^2 (A+2 C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{a+b \cos (c+d x)}}+\frac{b (3 A+8 C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{A b \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{4 a d}-\frac{A b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{A \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)}}{2 d} \]

[Out]

-(A*b*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*a*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)
]) + (b*(3*A + 8*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a + b*
Cos[c + d*x]]) - ((A*b^2 - 4*a^2*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b
)/(a + b)])/(4*a*d*Sqrt[a + b*Cos[c + d*x]]) + (A*b*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*a*d) + (A*Sqrt[a
 + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.989618, antiderivative size = 277, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3048, 3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ -\frac{\left (A b^2-4 a^2 (A+2 C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{a+b \cos (c+d x)}}+\frac{b (3 A+8 C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{A b \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{4 a d}-\frac{A b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{A \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

-(A*b*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*a*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)
]) + (b*(3*A + 8*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a + b*
Cos[c + d*x]]) - ((A*b^2 - 4*a^2*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b
)/(a + b)])/(4*a*d*Sqrt[a + b*Cos[c + d*x]]) + (A*b*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*a*d) + (A*Sqrt[a
 + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \sqrt{a+b \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx &=\frac{A \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} \int \frac{\left (\frac{A b}{2}+a (A+2 C) \cos (c+d x)+\frac{1}{2} b (A+4 C) \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{A b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac{A \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{\int \frac{\left (\frac{1}{4} \left (-A b^2+4 a^2 (A+2 C)\right )+\frac{1}{2} a b (A+4 C) \cos (c+d x)-\frac{1}{4} A b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a}\\ &=\frac{A b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac{A \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac{\int \frac{\left (\frac{1}{4} b \left (A b^2-4 a^2 (A+2 C)\right )-\frac{1}{4} a b^2 (3 A+8 C) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a b}-\frac{(A b) \int \sqrt{a+b \cos (c+d x)} \, dx}{8 a}\\ &=\frac{A b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac{A \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{8} (b (3 A+8 C)) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx-\frac{\left (A b^2-4 a^2 (A+2 C)\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{8 a}-\frac{\left (A b \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{8 a \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{A b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{A b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac{A \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{\left (b (3 A+8 C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{a+b \cos (c+d x)}}-\frac{\left (\left (A b^2-4 a^2 (A+2 C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{8 a \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{A b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{b (3 A+8 C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}-\frac{\left (A b^2-4 a^2 (A+2 C)\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 a d \sqrt{a+b \cos (c+d x)}}+\frac{A b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 a d}+\frac{A \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [C]  time = 3.38998, size = 406, normalized size = 1.47 \[ \frac{\frac{2 \left (8 a^2 (A+2 C)-3 A b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{a \sqrt{a+b \cos (c+d x)}}-\frac{2 i A \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )}{a^2 \sqrt{-\frac{1}{a+b}}}+\frac{8 b (A+4 C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{4 A \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)} (2 a+b \cos (c+d x))}{a}}{16 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^3,x]

[Out]

((8*b*(A + 4*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d
*x]] + (2*(-3*A*b^2 + 8*a^2*(A + 2*C))*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a
+ b)])/(a*Sqrt[a + b*Cos[c + d*x]]) - ((2*I)*A*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d
*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]],
(a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)]
 + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a^2*S
qrt[-(a + b)^(-1)]) + (4*A*Sqrt[a + b*Cos[c + d*x]]*(2*a + b*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/a)/(16*d
)

________________________________________________________________________________________

Maple [B]  time = 0.908, size = 1264, normalized size = 4.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x)

[Out]

-1/4*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*A*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*
c)^6+(12*A*a*b+8*A*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-4*A*a^2-6*A*a*b-2*A*b^2)*sin(1/2*d*x+1/2*c)^
2*cos(1/2*d*x+1/2*c)-4*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*Ell
ipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-A*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-3*A*E
llipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b+4*A*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^
2-A*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2-8*C*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2
))*a*b+8*C*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2)*sin(1/2*d*x+1/2*c)^4+4*(-2*b/(a-b)*sin(1/2
*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/
2))*a*b-A*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2-3*A*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(
1/2))*a*b+4*A*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2-A*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/
(a-b))^(1/2))*b^2-8*C*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b+8*C*EllipticPi(cos(1/2*d*x+1/2*c),2
,(-2*b/(a-b))^(1/2))*a^2)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2
+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/
(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^2+3*A*(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(
a-b))^(1/2))*a*b-4*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Elliptic
Pi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^2+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2+8*C*b*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-8*a^2
*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2
*c),2,(-2*b/(a-b))^(1/2)))/a/(2*cos(1/2*d*x+1/2*c)^2-1)^2/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^
2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**3*(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{b \cos \left (d x + c\right ) + a} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^3*(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^3, x)